「纳米材料有哪些」纳米科技与纳米材料
纳米材料有哪些
纳米科技与纳米材料
纳米材料的种类?按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是用人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的,而浩瀚的海洋就是一个庞大超微粒的聚集场所。扩展资料:纳米材料的物理性质和化学性质既不同于宏观物体,也不同于微观的原子和分子。当组成材料的尺寸达到纳米量级时,纳米材料表现出的性质与体材料有很大的不同。在纳米尺度范围内原子及分子的相互作用,强烈地影响物质的宏观性质。物质的机械、电学、光学等性质的改变,出现了构筑它们的基石达到纳米尺度。例如铜的纳米晶体硬度是微米尺度的5倍,脆性的陶瓷成为易变形的纳米材料,半导体量子阱、量子线和量子点器件的性能要比体材料的性能好得多;当晶体小到纳米尺寸时,由于位错的滑移受到边界的限制而表现出比体材料高很多的硬度;纳米光学材料会有异常的吸收;体表面积的变化使得纳米材料的灵敏度比体材料要高得多;当多层膜的单层厚度达到纳米尺寸时会有巨磁阻效应等。纳米材料之所以能具备独到的特性,是当组成物质中的某一相的某一维的尺度缩小至纳米级,物质的物理性能将出现根本不是它的任一组分所能比拟的改变。参考资料来源:百度百科-纳米材料
金属纳米,纳米晶体,纳米陶瓷纳米玻璃,纳米复合材料。
大致可分为4类:纳米微粒 纳米纤维、纳米薄膜、纳米块体
什么是神奇的纳米材料
材料的基本结构单元至少有一维处于纳米尺度范围(一般在11100nm),并由此具有某些新特性的材料(1微米=1000纳米)。 纳米级结构材料简称为纳米材料(nanometermaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如:熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。材料分类: 纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料。按材料物性可分为:纳米半导体、纳米磁性材料、纳米非线性光学材料、纳米铁电体、纳米超导材料、纳米热电材料等。按应用可分为纳米电子材料、纳米光电子材料、纳米生物医用材料、纳米敏感材料、纳米储能材料等。纳米材料大部分都是用人工制备的,属于人工材料,但是自然界中早就存在纳米微粒和纳米固体。例如天体的陨石碎片,人体和兽类的牙齿都是由纳米微粒构成的,而浩瀚的海洋就是一个庞大超微粒的聚集场所。扩展资料:纳米材料的物理性质和化学性质既不同于宏观物体,也不同于微观的原子和分子。当组成材料的尺寸达到纳米量级时,纳米材料表现出的性质与体材料有很大的不同。在纳米尺度范围内原子及分子的相互作用,强烈地影响物质的宏观性质。物质的机械、电学、光学等性质的改变,出现了构筑它们的基石达到纳米尺度。例如铜的纳米晶体硬度是微米尺度的5倍,脆性的陶瓷成为易变形的纳米材料,半导体量子阱、量子线和量子点器件的性能要比体材料的性能好得多;当晶体小到纳米尺寸时,由于位错的滑移受到边界的限制而表现出比体材料高很多的硬度;纳米光学材料会有异常的吸收;体表面积的变化使得纳米材料的灵敏度比体材料要高得多;当多层膜的单层厚度达到纳米尺寸时会有巨磁阻效应等。纳米材料之所以能具备独到的特性,是当组成物质中的某一相的某一维的尺度缩小至纳米级,物质的物理性能将出现根本不是它的任一组分所能比拟的改变。参考资料来源:百度百科-纳米材料
金属纳米,纳米晶体,纳米陶瓷纳米玻璃,纳米复合材料。
大致可分为4类:纳米微粒 纳米纤维、纳米薄膜、纳米块体
什么是神奇的纳米材料
材料的基本结构单元至少有一维处于纳米尺度范围(一般在11100nm),并由此具有某些新特性的材料(1微米=1000纳米)。 纳米级结构材料简称为纳米材料(nanometermaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如:熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。材料分类: 纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
金属纳米,纳米晶体,纳米陶瓷纳米玻璃,纳米复合材料。
大致可分为4类:纳米微粒 纳米纤维、纳米薄膜、纳米块体
什么是神奇的纳米材料
材料的基本结构单元至少有一维处于纳米尺度范围(一般在11100nm),并由此具有某些新特性的材料(1微米=1000纳米)。 纳米级结构材料简称为纳米材料(nanometermaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如:熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。材料分类: 纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

哪些属于纳米材料很简单啊,就是一维二维三维 一维纳米材料有量子点,纳米球,纳米颗粒纳米线等接着就是二维纳米材料,有石墨烯,磷烯各种平面材料 三维材料主要有MOF,一些晶体都是三维纳米材料。
什么是神奇的纳米材料

很简单啊,就是一维二维三维 一维纳米材料有量子点,纳米球,纳米颗粒纳米线等接着就是二维纳米材料,有石墨烯,磷烯各种平面材料 三维材料主要有MOF,一些晶体都是三维纳米材料。
什么是神奇的纳米材料
什么是神奇的纳米材料

纳米材料是指什么材料?纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~1000个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。应用范围:纳米磁性材料:在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好。而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。纳米陶瓷材料:传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。

纳米材料是指在三维空间中至少有一维处于纳米尺寸(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~1000个原子紧密排列在一起的尺度。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。应用范围:纳米磁性材料:在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好。而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。纳米陶瓷材料:传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。

用纳米技术做的东西有哪些?用纳米技术做的东西有:1、衣:在纺织和化纤制品中添加纳米微粒,可除味杀菌。在化纤布中加入少量金属纳米微粒,可消除静电现象。2、食:利用纳米材料,冰箱可以抗菌。使用纳米材料制作无菌餐具、无菌食品包装用品。利用纳米粉末,使废水彻底变清水,完全达到饮用标准。制作纳米食品,色香味俱全,有益健康。3、住:纳米技术的运用,使墙面涂料的耐洗刷性提高10倍。玻璃和瓷砖表面加涂纳米薄层,可制成自洁玻璃和自洁瓷砖,无需擦洗。含有纳米微粒的建筑材料可吸收对人体有害的紫外线。4、行:纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,极大提高发动机效率、工作寿命和可靠性。纳米卫星可随时向驾驶人员提供交通信息,帮助其安全驾驶。5、医:利用纳米技术制成的微型药物输送器,可携带一定剂量的药物,准确到达靶点。它能有效地发挥治疗作用,减少药物的不良反应。

用纳米技术做的东西有:1、衣:在纺织和化纤制品中添加纳米微粒,可除味杀菌。在化纤布中加入少量金属纳米微粒,可消除静电现象。2、食:利用纳米材料,冰箱可以抗菌。使用纳米材料制作无菌餐具、无菌食品包装用品。利用纳米粉末,使废水彻底变清水,完全达到饮用标准。制作纳米食品,色香味俱全,有益健康。3、住:纳米技术的运用,使墙面涂料的耐洗刷性提高10倍。玻璃和瓷砖表面加涂纳米薄层,可制成自洁玻璃和自洁瓷砖,无需擦洗。含有纳米微粒的建筑材料可吸收对人体有害的紫外线。4、行:纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,极大提高发动机效率、工作寿命和可靠性。纳米卫星可随时向驾驶人员提供交通信息,帮助其安全驾驶。5、医:利用纳米技术制成的微型药物输送器,可携带一定剂量的药物,准确到达靶点。它能有效地发挥治疗作用,减少药物的不良反应。

纳米材料有哪些?纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。1、纳米陶瓷利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。2、纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。3、纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。4、纳米膜纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。5、纳米块体纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。扩展资料纳米材料一般有四大特性。其中最主要的一点是他的表面效应。纳米材料的表面效应是指固体物质尺寸减少到纳米量级时,其表面原子所占整个纳米粒子原子数的比例会睡着原子半径减小而急剧增加。随着纳米粒子变小,纳米材料的比表面积会显著增大,表面原子占比的的迅速升高。例如氮砷纳米粒子直径变成10nm时,其表面原子占比会迅速增加,减小到1nm时,其表面原子占比达到百分之九十以上,彻底改变结构。由于纳米粒子的表面原子的化合价通常没有达到饱和,会在其表面形成很多的悬空键,即具备极易成键的电子存在,从而使纳米粒子有很高的表面活性。此外纳米粒子在溶液或者其他介质的表面极容易吸附大量的原子、分子、离子后,也是为了抵消大量的表面未成键的悬空键、另外还有未经表面处理的纳米粒子非常容易自身自建填充悬空键而团聚,也属于纳米材料的表面效应。总之,表面效应引起粒子化学性质变得活泼,这就给材料研发带来了很大的化学空间。参考资料来源:百度百科-纳米材料
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。 纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。纳米膜纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。 纳米块体: 是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。
纳米粉末,纳米纤维,纳米膜,纳米块体,纳米陶瓷,碳纳米管,纳米涂层,纳米吸波材料,纳米晶,纳米玻璃,纳米衣,纳米纱,纳米釉。等材料
纳米涂层、炭纳米管、

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。1、纳米陶瓷利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。2、纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。3、纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。4、纳米膜纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。5、纳米块体纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。扩展资料纳米材料一般有四大特性。其中最主要的一点是他的表面效应。纳米材料的表面效应是指固体物质尺寸减少到纳米量级时,其表面原子所占整个纳米粒子原子数的比例会睡着原子半径减小而急剧增加。随着纳米粒子变小,纳米材料的比表面积会显著增大,表面原子占比的的迅速升高。例如氮砷纳米粒子直径变成10nm时,其表面原子占比会迅速增加,减小到1nm时,其表面原子占比达到百分之九十以上,彻底改变结构。由于纳米粒子的表面原子的化合价通常没有达到饱和,会在其表面形成很多的悬空键,即具备极易成键的电子存在,从而使纳米粒子有很高的表面活性。此外纳米粒子在溶液或者其他介质的表面极容易吸附大量的原子、分子、离子后,也是为了抵消大量的表面未成键的悬空键、另外还有未经表面处理的纳米粒子非常容易自身自建填充悬空键而团聚,也属于纳米材料的表面效应。总之,表面效应引起粒子化学性质变得活泼,这就给材料研发带来了很大的化学空间。参考资料来源:百度百科-纳米材料
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。 纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。纳米膜纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。 纳米块体: 是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。
纳米粉末,纳米纤维,纳米膜,纳米块体,纳米陶瓷,碳纳米管,纳米涂层,纳米吸波材料,纳米晶,纳米玻璃,纳米衣,纳米纱,纳米釉。等材料
纳米涂层、炭纳米管、
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。 纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。纳米膜纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。 纳米块体: 是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。
纳米粉末,纳米纤维,纳米膜,纳米块体,纳米陶瓷,碳纳米管,纳米涂层,纳米吸波材料,纳米晶,纳米玻璃,纳米衣,纳米纱,纳米釉。等材料
纳米涂层、炭纳米管、

相关推荐
评论列表
暂无评论,快抢沙发吧~
你 发表评论:
欢迎